Inverse problem by Cauchy data on arbitrary subboundary for system of elliptic equations
نویسنده
چکیده
We consider an inverse problem of determining coefficient matrices in an N -system of second-order elliptic equations in a bounded two dimensional domain by a set of Cauchy data on arbitrary subboundary. The main result of the article is as follows: If two systems of elliptic operators generate the same set of partial Cauchy data on an arbitrary subboundary, then the coefficient matrices of the first-order and zero-order terms satisfy the prescribed system of first-order partial differential equations. The main result implies the uniqueness of any two coefficient matrices provided that the one remaining matrix among the three coefficient matrices is known.
منابع مشابه
Analytic solutions for the Stephen's inverse problem with local boundary conditions including Elliptic and hyperbolic equations
In this paper, two inverse problems of Stephen kind with local (Dirichlet) boundary conditions are investigated. In the first problem only a part of boundary is unknown and in the second problem, the whole of boundary is unknown. For the both of problems, at first, analytic expressions for unknown boundary are presented, then by using these analytic expressions for unknown boundaries and bounda...
متن کاملBoundary temperature reconstruction in an inverse heat conduction problem using boundary integral equation method
In this paper, we consider an inverse boundary value problem for two-dimensional heat equation in an annular domain. This problem consists of determining the temperature on the interior boundary curve from the Cauchy data (boundary temperature and heat flux) on the exterior boundary curve. To this end, the boundary integral equation method is used. Since the resulting system of linea...
متن کاملThe Stability for the Cauchy Problem for Elliptic Equations *
We discuss the ill-posed Cauchy problem for elliptic equations, which is pervasive in inverse boundary value problems modeled by elliptic equations. We provide essentially optimal stability results, in wide generality and under substantially minimal assumptions. As a general scheme in our arguments, we show that all such stability results can be derived by the use of a single building brick, th...
متن کاملDetermination of second-order elliptic operators in two dimensions from partial Cauchy data.
We consider the inverse boundary value problem in two dimensions of determining the coefficients of a general second-order elliptic operator from the Cauchy data measured on a nonempty arbitrary relatively open subset of the boundary. We give a complete characterization of the set of coefficients yielding the same partial Cauchy data. As a corollary we prove several uniqueness results in determ...
متن کاملParameter determination in a parabolic inverse problem in general dimensions
It is well known that the parabolic partial differential equations in two or more space dimensions with overspecified boundary data, feature in the mathematical modeling of many phenomena. In this article, an inverse problem of determining an unknown time-dependent source term of a parabolic equation in general dimensions is considered. Employing some transformations, we change the inverse prob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012